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Paradigm evolution of Material Science
Material research evolutes into big data driven paradigm

• Traditional material science study based on 

empirical and experience. 

• After the invention of calculus in 17th century, 

quantitively description of natural phenomena 

became possible. 

• Invention of complex computer enables large 

scale simulation based on DFT and MD 

method. 

• Data science developed in the last two decades 

enables material researcher to find the rules 

behind both experimental and simulation data. 
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ML / DL help material design
Supervised Learning is the key for material design

• Supervised learning is the most useful tool in 

machine learning added material design

• Unsupervised learning is used to clustering task 

while reinforcement learning is used for game 

theory

• Deep learning method as a subsequence of 

machine learning have raised researcher’s 

attentional due to its unimageable ability in 

multi-factor prediction
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Deep Learning: Bio-mimic Structure 
Multiple neural network model was proposed by Fukushima 

Fukushima
Deep learning network is a typical bio-mimic structure
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GAN: A Masterpiece of Two-player Game
Generative adversarial network model was proposed by Ian Goodfellow

Ian Goodfellow

Generative Adversarial  Network

Generator Discriminator
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Crystal-GAN: Guide New Material Discovery
Generative Adversarial Networks is a potential way for new material discovery
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Crystal-GAN: Data Pipeline
ML/DL added material design method is the hotpot in recent years
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Data Collection
There are three main resources for database building

 With the increase of training data amount, performance of trained model improves (Figure below)

 Data Sources: Open Massive Database, Self-built Database

 Open Massive Database includes: ICSD (Material Project), OQMD
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Data Collection: Self-built Database
There are at least 2 method for self-built database generation:

There are at least 2 method 

for self-built database 

generation:

Method 1. Generate structure and use 

phonon criteria to judge its validation.

Method 2. Generated structure forward by 

phonon spectrum knowledge.

no

Begin

Generator
(AIMD)

Atomic Force = 0: Min Energy?

Save

End

yes

no

Phonon Dispersion Curves: Stable?

yes



NPU | QMUL

Data Representation 
There are at least 2 method for data representation method

 Data Representation method must cover 4 properties: reference invariance, degeneracy, smoothness and 

transformability

 Data Representation method might include the following method: Graphical Neural Network (GNN) and 

Describer

 GNN method is commonly used in molecular dynamic. As a newly developed method, its typical 

representative includes SchNet, PhyNet
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Model Choice
Choice of model is the key to the robustness and accuracy of the final prediction

 Choice of model is the key to the robustness and accuracy of the final prediction. It have to follow the 

nature of data.

 Commonly, hieratical data employs CNN model while sequential data for RNN model and ANN for the 

rest.

Convolutional  Neural Network
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Model Optimization
Model optimization method directly affect the speed of the final prediction 

 Optimization of hyperparameters: connectivity between neuron, number of layers, number of neuron in 

each layers, type of activate function, learning rate, batch size

 Choice of Loss Function

Methods: 

 Grid Search algorithm,

 Random Search algorithm

 Network Architecture Search (NAS) 

algorithm (if possible)
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Evaluation: Take NbO system as an example
NbO binary system will be an example to testify the performance of proposed model
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Related work: ElemNet
ElemNet that is a deep learning-based material prediction model proposed by Jha, Northwest University

Establish the relationship between 

chemical composition and macroscopical 

properties 

With the deepen of network, performance 

will be better, but not always;

More epochs, more accurate

MAE: Mean Absolute Error

D. Jha et al., “ElemNet: Deep Learning the Chemistry of Materials From Only Elemental Composition,” Sci. Rep., vol. 8, no. 1, pp. 1–14, 2018, doi: 10.1038/s41598-018-

35934-y.
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May the world learn from data!
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